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Moments of the First Passage Time under External
Driving
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A general theory is derived for the moments of the first passage time of a one-
dimensional Markov process in the presence of a weak time-dependent forcing.
The linear corrections to the moments can be expressed by quadratures of the
potential and of the time-dependent probability density of the unperturbed sys-
tem or equivalently by its Laplace transform. If none of the latter functions is
known, the derived formulas may still be useful for specific cases including a
slow driving or a driving with power at only small or large times. In the sec-
ond part of the paper, explicit expressions for the mean and variance of the
first passage time are derived for the cases of a linear or a parabolic potential
and an exponentially decaying driving force. The analytical results are found to
be in excellent agreement with computer simulations of the respective first-pas-
sage processes. The particular examples furthermore demonstrate that already
the effect of a simple exponential driving can be fairly involved implying a non-
trivial nonmonotonic behavior of mean and variance as functions of the driv-
ing’s time scale.

KEY WORDS: First-passage time; driven stochastic systems.

1. INTRODUCTION

One of the key results in the theory of stochastic processes are the quad-
rature expressions for the moments of the first passage time (FPT) in
the case of a one-dimensional Markov process(1,2). One of the assump-
tions made in the seminal papers by Pontryagin et al.,(1) and Siegert(2) is
the temporal homogeneity of the process: except for the driving Gauss-
ian white noise the system is subject to a force without time-dependence.
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In many instances this assumption does not hold and an extension of the
classic theory to the case of a time-dependent force is desirable.

In the context of many noise-induced phenomena, for instance, the
presence of an additional deterministic or stochastic perturbation is essen-
tial and its effect on the passage time statistics is of foremost interest.
In the case of resonant activation (RA),(3–6), the additional driving is a
stochastic process with state-dependent amplitude. For the problems of
stochastic resonance (SR) (see ref. 7 and references therein) and coherent
stochastic resonance (CSR)(8–11) the driving is commonly a deterministic
periodic signal. The key feature of both RA and CSR is a minimum in the
mean FPT or mean exit time attained at a finite “optimal” value of the
forcing’s time scale (e.g. correlation time or driving period). Similarly, SR
is realized if a time-scale matching condition between the forcing period
and the FPT of the unperturbed system (an inverse Kramers rate) is met.

My own interest in the general problem originates in studies of sto-
chastic neuron models involving an exponentially decaying time-dependent
forcing. For these models, the FPT corresponds to the interspike inter-
vals (ISIs) separating the neural discharges (action potentials or spikes) by
means of which neurons transmit and process signals. The exponentially
decaying perturbation in these models arises from slow ionic currents that
are driven by the spiking activity of the neuron itself(12). An exponential
perturbation is also obtained via a simple transformation of models with a
decaying threshold; such models have been employed to reproduce the sta-
tistics of certain sensory neurons(13,14). In general, the effect of an expo-
nentially decaying driving on the FPT statistics is poorly understood up to
now in contrast to the frequently studied case of periodically forced sto-
chastic neuron models (see e.g. refs. 15–20).

In order to study the change of the FPT statistics induced by a
time-dependent driving, researchers have used two different analytical
approaches. First, keeping the potential shape, the driving force as well
as the boundary and initial conditions as simple as possible allows in
some cases for an exact, in others for an approximate solution. This
kind of approach was pursued in the late 1980’s(8,21,22) and during the
1990s(3,4,9,11,16) (see also ref. 23, ch 4 for further examples); in most cases
(piecewise) linear potentials and a small-amplitude periodic or dichoto-
mous driving were considered. Later several researchers proposed semi-
analytic procedures to solve these FPT problems(24–26). In order to obtain
explicit analytical results one may also consider a fast stochastic driv-
ing (instead of a small-amplitude driving) and apply a different kind
of perturbation theory for systems with a smooth potential shape (see,
e.g., in the context of noise-induced transport refs. 27–28). It should also
be noted that there exists a considerable mathematical literature on the
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FPT problem with time-dependent deterministic forcing, most of which is
devoted to specific simple cases that are exactly solvable by a transforma-
tion to a time-homogeneous system (see refs. 29–31 and further references
cited in these papers).

The other analytical approach consists of a weak noise analysis of
driven first-passage processes. Here the only assumption made about the
potential is the existence of a metastable state. The refs.(32–35) focused on
the escape rate out of a metastable one-dimensional potential (the inverse
mean first passage time for a quasi-equilibrium initial condition) in the
small-noise limit and aimed thus at a generalization of the famous Kra-
mers problem(36,37) for periodic(32–34) or stochastic(5,6) driving. Although
both approaches led to significant progress, there are also many instances
where one wishes to go beyond the limit set by assuming weak noise or
piecewise linear potentials and where also higher moments and not only
the mean FPT (or its inverse) may be of interest.

Here I give an extension of the classic concept due to Pontryagin(1)

and Siegert(2) of calculating the FPT moments for a general potential to
the case that includes a weak time-dependent driving. I focus on a deter-
ministic driving that is bounded in growth such as periodic or decaying
functions of time. The approach might also be helpful in situations with
an additional stochastic driving. I will use a perturbation calculation that
requires a weak driving and will consider the first (linear) correction term
for each moment. No restrictions apply with respect to the noise intensity
or the time scale of the driving, although the range of validity of the the-
ory, i.e., the question how “weak” the driving has to be, may also depend
on these parameters. My most general result relates the linear corrections
to each moment of the FPT to quadratures of the time-dependent proba-
bility density P0(x, t) of the unperturbed system or to quadratures of the
Laplace transform of this function. An alternative formulation provides
the corrections in terms of an infinite sum of quadratures of known func-
tions. These results cannot be applied in the general case (arbitrary driving
function and arbitrary potential shape), since P0(x, t) and/or its Fourier
transform are not known for most potentials and the numerical evalua-
tion of an infinite sum of quadratures is in general not feasible either. For
many important cases, however, including a slow driving, a driving with
power at only small times or a driving with power at only large times, the
derived general formulas can be useful for the FPT problem in a potential
of arbitrary shape. Furthermore, I will show that for two specific poten-
tial shapes (linear and parabolic) and an exponentially decaying driving
force, the derived theory yields valid (and in part strikingly simple) results
for the FPT’s mean and variance for arbitrary time scale of the driving
(slow, moderate, or fast compared to the mean FPT of the unperturbed
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system). The explicit results derived for an exponential driving function
can be applied to the neurobiological problems mentioned above; this will
be done elsewhere. Since the exponential decay of drift parameters is fre-
quently encountered in many situations, the results may be also helpful for
the study of other physical systems.

This paper is organized as follows. Section 2 starts with an introduc-
tion of the problem and of the quantities of interest. Next I present an
derivation of alternative quadrature formulas for the FPT moments in the
time-homogeneous case. These quadratures are entirely equivalent to the
classic formulas by Siegert(2) as shown in Appendix APPENDIX A. The
alternative approach will be the basis for the perturbation calculation of
the time-inhomogeneous first-passage problem leading to the general rela-
tion between the corrections of the moments and the quadratures of the
unperturbed probability density. In Section 3, I derive explicit results for
a linear and a parabolic potential and an exponential driving force. These
analytical results will be compared to simulations of the two systems in
Section 4. Here I will show that, remarkably, similar to the case of peri-
odic driving, a nontrivial behavior of the FPT’s mean and variance with
respect to the time scale of the driving (i.e. the decay rate of the expo-
nential driving) is possible. The mechanisms for these “resonances” will be
discussed. Section 5 summarizes the findings and discusses further applica-
tions and extensions of the theory.

2. GENERAL THEORY

2.1. Langevin and Fokker–Planck Equations

The starting point of my consideration is the Langevin equation for
a one-dimensional escape process given by a potential U(x), a white-noise
driving of intensity D, and an additional weak time-dependent forcing
εs(t)

ẋ =−U ′(x)+ εs(t)+
√

2Dξ(t). (1)

Without loss of generality I consider an initial value of zero (x(0) = 0)
and ask for the first-passage time to a point xE to the right of the ori-
gin (xE >0). The only restriction for the potential is that I exclude poten-
tials that allow for an escape toward minus infinity. Furthermore, I do not
specify the forcing s(t) but take for granted that its effect on the FPT sta-
tistics is weak by virtue of the small parameter ε. Possible driving forces
include transient shapes (e.g., an exponentially or algebraically decaying
driving force) as well as periodic functions (e.g., a cosine function).
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Instead of using the Kolmogorov (backward) equation as it is com-
monly done in the treatment of FPT problems(2,38), I shall employ the
Fokker-Planck (forward) equation (FPE) governing the probability density
of x

∂tP (x, t)= ∂x [(U ′(x)− εs(t))P (x, t)+D∂xP (x, t)]. (2)

The FPT problem stated above determines the initial condition (at t =
0 the variable x is with certainty at x = 0) and the boundary condition
(absorbing boundary condition at x =xE)

P(x,0) = δ(x), (3)

P(xE, t) = 0. (4)

It is well known that there is a simple relation between the FPT density
and a quantity derived from the probability density P(x, t): the FPT den-
sity is given by the time-dependent probability current at the absorbing
boundary (see, for instance, ref. 39)

�(T ) = J (xE, T )=−[(U ′(x)− εs(T ))P (x, T )+D∂xP (x, T )]|x=xE

= −D∂xP (x, T )|x=xE
. (5)

Provided �(t) is known, one can calculate the moments of the FPT by

〈T n(0→xE)〉=
∞∫

0

dT T n�(T )=−D

∞∫
0

dT T n∂xP (x, T )|x=xE
. (6)

For certain problems it may be desirable to know also the Laplace trans-
form of �(T ). This function can be expressed by the Laplace transform
of the probability density p̃(x,p) as follows:

ρ(p)=
∞∫

0

dt e−pt�(t)=−D∂xp̃(x,p)

∣∣∣∣
x=xE

. (7)

By means of the Laplace transform the moments can be calculated as
follows

〈T n(0→xE)〉= (−1)n
d(n)

dpn
ρ(p)

∣∣∣∣
p=0

. (8)
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However, even in the absence of a time-dependent driving (ε =0), solving
directly for one of the functions P(x, t), �(T ), or ρ(p) is possible only in
a few simple cases including constant and linear potential shapes. Never-
theless, for calculating the moments of the FPT we are not restricted to
use Eq. (6) or Eq. (8). Remarkably if ε =0, the moments of the FPT can
be calculated exactly for an arbitrary potential shape U(x). The general
formula for the n-th moment of the passage from a general initial point
x =a to an absorbing boundary at x =b is given by(2)

〈T n(a →b)〉0 = n

D

∫ b

a

dyeU(y)/D

∫ y

−∞
dxe−U(x)/D〈T n−1(x →b)〉0, (9)

where the index “0” indicates that ε = 0 (later on, this convention will be
also applied to the functions P(x, t), p̃(x,p) and ρ(p)). In order to cal-
culate the n-th moment one has to first solve for the lower moments as
functions of the initial point. The hierarchy of quadratures is completed
by stating that 〈T 0(a →b)〉=〈1〉=1, for obvious reasons.

The aim of this paper is to extend these expressions to the case of a
weak time-dependent driving function εs(t). In other words, I seek for the
linear correction term to the n-th moment denoted jn(xE) such that

〈T n〉=〈T n〉0 + εjn(xE). (10)

These are the first two terms of an Taylor expansion of the n-th moment
in powers of ε assuming that the remainder of this expansion is not only
bounded but can be even neglected. Since one does not know the remain-
der of the expansion, results based on an ansatz like Eq. (10) have to be
checked by computer simulations at different parameters; for a further dis-
cussion of the validity of the linear ansatz, see also Section 4.

Once the corrections to the first two moments have been calculated,
mean and variance of the FPT will be to linear order in ε given by

〈T 〉 = 〈T 〉0 + εj1(xE), (11)

〈∆T 2〉 = 〈T 2〉−〈T 〉2

= 〈∆T 2〉0 + ε[j2(xE)−2〈T 〉0j1(xE)]. (12)

Later on, for specific systems, I will solely discuss these first two cumu-
lants and the relative standard deviation (coefficient of variation, CV) of
the FPT given by

CV=
√

〈∆T 2〉
〈T 〉 . (13)
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2.2. Moments of the First Passage Time in the Autonomous

Case—The Other Way Around

Here I set ε =0. First I introduce the functions

βn(x)=
∫ ∞

0
dt tnP (x, t) (14)

and

Jn(x)=−(U ′(x)+D
d

dx
)βn(x). (15)

On comparing Eqs. (6) and (14) and (15) it becomes apparent that βn and
Jn are related to the n-th moment of the FPT as follows:

〈T n〉0 =−Dβ ′
n(xE)=Jn(xE). (16)

Here and in the following the prime denotes the derivative with respect to
x. I now derive the general solutions for Jn(x) which provide an alterna-
tive solution for the FPT moments by virtue of Eq. (16).

Multiplying the FPE (2) with tn, integrating over t , and using integra-
tion by part on the l.h.s. of the equation, I obtain for the functions βn(x)

the following set of equations:

−δ(x) = d

dx
(U ′(x)+D

d

dx
)β0(x), (17)

−nβn−1(x) = d

dx
(U ′(x)+D

d

dx
)βn(x). (18)

The boundary conditions can be inferred from those for P0(x, t)

βn(xE)=0 and β(k)
n (−∞)=0 (with k =0,1,2, · · · ) (19)

with β
(k)
n (x) denotes the k-th derivative. The solutions are straightforward

β0(x) = 1
D

e−U(x)/D

xE∫
x

dy eU(y)/D	(y), (20)

βn(x) = n

D
e−U(x)/D

xE∫
x

dy eU(y)/D

y∫
−∞

dzβn−1(z), n=1,2, · · · (21)
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where 	(x) denotes the Heaviside jump function(40). For the Jn(x), I find

−δ(x) = −J ′
0(x), (22)

−nβn−1(x) = −J ′
n(x), n=1,2, . . . (23)

The first equation leads immediately to a Heaviside function

J0(x)=	(x). (24)

To the second equation I apply the operator −(U ′(x) + Dd/dx) which
yields

−nJn−1(x)=U ′(x)J ′
n(x)+DJ ′′

n (x), n=1,2, . . . (25)

From eqs. (22),(23), and (19), I obtain boundary conditions for Jn

J ′
n(xE)=0, Jn(−∞)=0. (26)

The solution of Eq. (25) obeying these conditions reads

Jn(x)= n

D

x∫
−∞

dy e−U(y)/D

xE∫
y

dz eU(z)/DJn−1(z). (27)

This equation together with Eqs. (16) and (24) provides an alternative,
albeit in no way simpler method of calculating the moments of the FPT.
On comparing with Eq. (9), I note the differences in the signs of the expo-
nents, in the boundaries of integration, and in the first function of the
hierarchy Eq. (24) (for Eq. (9), the first of the functions was 〈T 0(a→b)〉=
1). Nevertheless, the alternative quadrature expressions derived here are
completely equivalent to Eq. (9) as shown in APPENDIX A. In particular
for n=1 Eqs. (24) and (27) yield

〈T 〉0 =J1(xE) = 1
D

[∫ 0

−∞
dx e−U(x)/D

∫ xE

0
dy eU(y)/D

+
∫ xE

0
dx e−U(x)/D

∫ xE

x

dy eU(y)/D

]
. (28)

Changing the order of integration yields then the same result as Eq. (9)
for n=1, a =0, b=xE .
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2.3. Including a Weak Time-Dependent Force

I now turn to the case ε �=0. For the probability density P(x, t) obey-
ing the FPE (2), I make the following ansatz:

P(x, t)=P0(x, t)+ εq(x, t), (29)

where the first term is the probability density for ε=0. Omitting all terms
of order ε2 and higher, I find the following equation governing the second
function

∂tq(x, t)= ∂x(U
′(x)+D∂x)q(x, t)− s(t)∂xP0(x, t). (30)

The boundary and initial conditions for this function can be inferred from
those of P(x, t) and P0(x, t)

P (xE, t)≡P0(xE, t)≡0 → q(xE, t)≡0, (31)

P(x,0)=P0(x,0)= δ(x) → q(x,0)≡0, (32)

P(−∞, t)≡P0(−∞, t)≡0 → q(−∞, t)≡0. (33)

Now I introduce the counterpart to the functions Jn(x) corresponding to
the perturbation q(x, t)

jn(x)=−(U ′ +D∂x)

∫ ∞

0
dt tnq(x, t). (34)

Knowledge of this function allows for the calculation of the n-th moment
of the first passage time by the following formula:

〈T n〉=〈T n〉0 + εjn(xE). (35)

From Eq. (30), I find

−j ′
n(x)=−n

∫ ∞

0
dt tn−1q(x, t)+

∫ ∞

0
dt tns(t)∂xP0(x, t). (36)

From this equation and from Eqs. (31) and (33), I can conclude that

jn(−∞)=0, (37)

j ′
n(xE)=−

∫ ∞

0
dt tns(t)∂xP0(xE, t)=−∂x T̂ nP0(x, t), (38)
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where I have used the integral operator T̂n that is defined by

T̂n =
∫ ∞

0
dt s(t)tn. (39)

(function is multiplied by tns(t) and then integrated). The solution of
Eq. (36) for j0(x) is straightforward

j0(x)=−T̂0P0(x, t)=−
∫ ∞

0
dt s(t)P0(x, t). (40)

The constant of integration in Eq. (40) is zero because of the boundary
conditions Eqs. (33) and (37).

For n>0, I apply the operator −(U ′ +D∂x) to Eq. (36)

U ′j ′
n +Dj ′′

n =−njn−1 − T̂n(U
′ +D∂x)P0(x, t)=fn(x). (41)

This equation has the same structure like those for the functions Jn(x) of
the unperturbed system. The difference lies in the inhomogeneities on the
r.h.s. (abbreviated by fn(x)) and the different boundary condition for the
derivative of jn at xE .

The solution for the derivative is given by

j ′
n(x) = e

−U(x)
D


cn + 1

D

x∫
−∞

dy e
U(x)
D fn(y)




= e
−U(x)

D


cn − n

D

x∫
−∞

dy e
U(x)
D jn−1(y)− T̂ne

U(x)
D ∂yP0(y, t)

∣∣∣∣∣∣
x

−∞

+ T̂n


 x∫

−∞
dy e

U(x)
D ∂2

yP0(y, t)−
x∫

−∞
dy e

U(x)
D ∂2

yP0(y, t)




 . (42)

The terms in the last line cancel and the integration constant cn has to be
chosen such that condition Eq. (38) is met. I obtain

j ′
n(x)=−T̂n∂xP0(x, t)+ n

D
e−U(x)/D

∫ xE

x

dy eU(y)/Djn−1(y). (43)
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Another integration (for which the integration constant is determined by
the boundary condition at −∞ given in Eq. (37)) yields

jn(x)=−T̂nP0(x, t)+ n

D

∫ x

−∞
dz e−U(z)/D

∫ xE

z

dy eU(y)/Djn−1(y). (44)

This equation is the first important result of my paper. I recall that the
corrections to the moments of the first passage time are obtained by tak-
ing jn at xE . Thus if the function P0(x, t) is given, one may calculate the
effect of the external driving on an arbitrary moment of the first passage
time by a subsequent solution of all the lower moments. If P0(x, t) is not
given (which is, unfortunately, usually the case) there are still several clas-
ses of tractable problems for which Eq. (44) is useful. These are discussed
in Section 2.4.

2.4. Further Simplification of the Result for Specific Cases

Equation (44) involves integrals over the probability density of the
unperturbed system multiplied with the time-dependent part of the drift
and powers of t . Expanding the driving function in powers of t permits to
express these integrals in terms of the known functions βk from Eq. (21)
as follows:

T̂nP0(x, t)=
∫ ∞

0
dt s(t)tnP0(x, t)=

∞∑
k=0

s(k)(0)

k!
βk+n(x) (45)

by means of which I obtain

jn(x)= n

D

∫ x

−∞
dz e−U(z)/D

∫ xE

z

dy eU(y)/Djn−1(y)−
∞∑

k=0

s(k)(0)

k!
βk+n(x).

(46)

This formula is especially useful in the case of a slow driving that can
be for t ∼ 〈T 〉0 described by just a few expansion terms s(k). As can be
expected, the zeroth term results in the static correction as I will briefly
show now for the simplest case n = 1. Suppose a static driving s(t) = 1,
then j0(x)=−β0(x) and the linear correction to the mean FPT reads
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j1,static(xE) = − 1
D

xE∫
−∞

dz e−U(z)/D

xE∫
z

dy eU(y)/Dβ0(y)

= − 1
D2

xE∫
−∞

dz e−U(z)/D

xE∫
z

dx

xE∫
x

dy eU(y)	(y)

= 1
D

xE∫
0

dy

y∫
−∞

dz
z−y

D
e[U(y)−U(z)]/D (47)

This correction is also obtained by considering the unperturbed system
with a potential Ũ (x) = U(x) − εx, writing down the mean FPT accord-
ing to Eq. (9) with n = 1, a = 0, b = xE , and expanding the result up to
first order in ε. For a nonstatic but slow forcing, the first correction term,
describing a truly dynamical effect of the driving, would be obtained by
taking into account a finite s′(0), leading to a quadrature formula that
involves β1(x). Although the incorporation of higher nonstatic corrections
is straightforward, note that the number of quadratures which have to be
numerically solved increases by two with every term s(n)(0) that is taken
into account.

Besides a slow driving another important class of perturbations is
given by drivings described by an exponential decay or a periodic func-
tion, both of which can be described by exp[−λt ] or a sum of such expo-
nentials. In this case the term T̂nP0(x, t) equals the n-th derivative of the
Laplace transform p̃0(x,p) of P0(x, t) with respect to the complex argu-
ment p taken at p =λ

T̂nP0(x, t) =
∫ ∞

0
dt e−pt tnP0(x, t)

∣∣∣∣
p=λ

= (−1)n
dn

dpn
p̃0(x,p)

∣∣∣∣
p=λ

. (48)

Using this form in Eq. (44) is in particular of advantage if the function
p̃0(x,p) is known but P0(x, t) is not known. For more general driving
functions, this can be generalized as follows. Suppose the Laplace trans-
form of the driving s(t) exists

s̃(p)=
∞∫

0

dt e−pt s(t), p �0. (49)



First Passage Time under External Driving 715

Then it is possible to recast Eq. (44) into the following form:

jn(x)=−F̂np̃0(x,−p)+ n

D

∫ x

−∞
dz e−U(z)/D

∫ xE

z

dy eU(y)/Djn−1(y),

(50)

where the operator F̂n is defined by

F̂n = 1
2πi

i∞∫
−i∞

dp s̃(p)
dn

dpn
. (51)

With a pure exponential driving, the term F̂np̃0(x,−p) reduces to Eq. (48)
as can be shown by the calculus of residues.

Further simplifications or approximations are possible by means of
short-time or asymptotic approximations of P0(x, t) (see, for instance,
ref. 41), if most of the driving power is at short or long times. Here I
shall no longer dwell on the general case but study the effect of a sim-
ple exponential driving on systems with linear or parabolic potential for
which exact correction formulas for the mean and variance can be found.

3. THEORY FOR A SYSTEM WITH LINEAR OR PARABOLIC

POTENTIAL AND EXPONENTIAL DRIVING

In the following, I will focus on the corrections to the first two
moments. These are given by

j1(xE)=− 1
D

xE∫
−∞

dxe−U(x)/D

∫ xE

x

dy eU(y)/DT̂0P0(y, t), (52)

j2(xE) = − 2
D

∫ xE

−∞
dx e−U(x)/D

∫ xE

x

dy eU(y)/D
{
T̂1P0(y, t)

+ 1
D

∫ y

−∞
dx2 e−U(x2)/D

∫ xE

x2

dy2 eU(y2)/DT̂0P0(y2, t)

}
(53)

Furthermore, the following driving force is considered

s(t)=λ exp[−λt ]. (54)
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Some remarks regarding this function are indicated. The function s(t) is
normalized (integration over time yields one). There are two simple lim-
its: (i) for λ 
 1〈T0〉, the function tends to a static bias of amplitude λ;
(ii) for λ→∞ the function approaches a δ function that changes the ini-
tial position from 0 to ε. In both limits, the moments of the first passage
time can be exactly calculated which gives us a mean to check the valid-
ity of the perturbation calculation. Furthermore, according to Eq. (48) the
operators T̂n correspond to derivatives of the Laplace transform p̃0(x, λ)

multiplied with λ

T̂nP0(x, t) = λ(−1)n
dn

dλn
p̃0(x, λ). (55)

Finally note, that the correction formulas can be looked upon as linear
operations on the driving function. This implies that the correction to a
driving consisting of a sum of exponentials equals the sum of the correc-
tions to the single exponentials. In particular, this applies to a (possibly
damped) cosine driving s(t)=exp[−(λ+ iω)t ]+c.c. with λ,ω∈� and λ≥0.

In the following, I will furthermore use a parabolic potential

U(x)=b
x2

2
−ax, b≥0 (56)

and will separately discuss the cases b = 0 and b �= 0. The former prob-
lem corresponds with a > 0 to a biased random walk toward the absorb-
ing boundary; there is no potential barrier present in this simple case and
the first passage will take place in a limited time even at vanishing noise.
In contrast to this, for b �= 0 and a/b <xE there exists a metastable point
(potential minimum of U(x)) to the left of the absorbing boundary; the
first passage process is noise-assisted, i.e., for vanishing noise the passage
time tends to infinity. I note that both cases are of particular importance
in the neurobiological context, where the FPT corresponds to the so called
interspike intervals generated by a perfect (b=0) or leaky (b>0) integrate-
and-fire neuron stimulated by white noise(39).

For the potential Eq. (56) with arbitrary b and the exponentially
decaying driving the correction formulas (52) and (53) can be considerably
simplified as shown in APPENDIX B. In particular, the corrections may
be expressed by the Laplace transform ρ0(λ) of the FPT density of the
unperturbed system instead of the function p̃0(x, λ), as follows:

j1(xE)= λ/D

λ−b

(
eUE/Dρ0(λ)

∫ xE

−∞
dxe−U(x)/D −

∫ 0

−∞
dxe−U(x)/D

)
, (57)
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j2(xE) = −2
(

λ

λ−b
+λ

d

dλ

)
j1(xE)

λ

+2/D2

λ−b

(
ρ0(λ)eUE/D

∫ xE

−∞
dx e−U(x)/DI 2(x)

−
∫ 0

−∞
dx e−U(x)/DI 2(x)− eU(0)/DI (0)

∫ xE

0
dx I (x)

)
, (58)

where

I (x) := eU(x)/D

∫ x

−∞
dy e−U(y)/D. (59)

3.1. Formulas for the Linear Potential Case

I now turn to the specific case of a linear potential, which is particu-
larly simple. Assuming b=0 and a >0, I have for ε =0 (e.g., see ref. 39)

〈T 〉0 = xE

a
, (60)

〈∆T 2〉0 = 2
DxE

a3
, (61)

CV0 =
√

2D

xEa
(62)

and

ρ0(λ) = exp

[
xE(a −

√
a2 +4λD)

2D

]
, (63)

I (x) ≡ D/a. (64)

Inserting the latter expressions into Eqs. (57) and (58) yields the following
linear corrections of the first and second moment, respectively,

j1(xE)= 1
a

(
e

xE(a−
√

a2+4λD)
2D −1

)
, (65)

j2(xE)= 2
a2

{(
xEa√

a2 +4λD
+ D

a

)
e

xE(a−
√

a2+4λD)
2D −xE − D

a

}
. (66)
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Hence, the mean and the variance of the first passage time in a linear
potential under the influence of a weak exponential driving are given by
the fairly simple expressions

〈T 〉= xE

a
− ε

a

(
1− e

xE(a−
√

a2+4λD)
2D

)
, (67)

〈∆T 2〉= 2D
xE − ε

a3
+ 2ε

a2

(
xEa√

a2 +4λD
+ D

a
−xE

)
e

xE(a−
√

a2+4λD)
2D . (68)

It can be easily seen that the corrections to the moments (65) and (66) are
negative if ε>0 (I recall that a,D, and λ are positive). This makes sense,
since a positive force toward threshold will always diminish the first pas-
sage time and hence also its moments. Furthermore, the correction of the
variance is also negative for ε being positive.

For very small decay rate (λ
1/〈T 〉0), an expansion of Eq. (67) and
Eq. (68) in λ yields

〈T 〉 → 〈T 〉0 − xE

a2
λε, λ
1/〈T 〉0, (69)

〈∆T 2〉 → 〈∆T 2〉0 −6
xEDελ

a4
, λ
1/〈T 〉0. (70)

This is also obtained if in the formulas of the unperturbed system (60) and
(61) the bias a is replaced by a +ελ and the formulas are expanded up to
linear order in ε. Hence the static limit confirms the result of the pertur-
bation calculation.

Considering the limit of large decay rate (λ → ∞), I note that the
exponential function in Eqs. (67) and (68) can be neglected and I obtain
the simple limit

〈T 〉 → xE − ε

a
, λ→∞, (71)

〈∆T 2〉 → 2D
xE − ε

a3
, λ→∞. (72)

In the limit λ → ∞ the driving acts as a δ spike at t = 0 with amplitude
ε, which leads to a modified initial point x(t = 0)= ε. To check this, one
can again use the formulas for the unperturbed system by replacing the
distance between initial point and absorbing boundary (which was xE) by
xE − ε. This leads exactly to Eqs. (71) and (72), i.e., in the limit λ → ∞
the result of the perturbation calculation is exact.



First Passage Time under External Driving 719

3.2. Formulas for the Parabolic Potential Case

Mean, variance, and Laplace transform of the FPT density for the
case of the parabolic potential and ε = 0 can be written as follows (see,
for instance, refs. 2,39,42).

〈T 〉0 =
√

π

b

x+∫
x−

dy ey2
erfc(y), (73)

〈∆T 2〉0 = 2π

b2

∞∫
x−

dy ey2
[erfc(y)]2

y∫
x−

dz ez2
	(x+ − z) (74)

and

ρ0(λ)= e−δ/2 D−λ/b(x+
√

2)

D−λ/b(x−
√

2)
, (75)

where

x− = a −bxE√
2Db

, x+ = a√
2Db

, δ =x2
− −x2

+. (76)

In these expressions, erfc(x) denotes the complementary error function
and Dα(z) is the parabolic cylinder function.(40) The auxiliary function
I (x) reads now

I (x)=
√

πD

2b
exp

[
(a −xb)2

2Db

]
erfc

(
a −xb√

2Db

)
. (77)

Using this function, I obtain the following correction to the mean first
passage time out of a parabolic potential

j1(xE)=
√

π

2bD

λ

λ−b
ex2+

[
eδρ0(λ)erfc(x−)− erfc(x+)

]
. (78)
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By means of the derivative of j1(xE) with respect to λ, the correction to
the second moment can be brought in the following form:

j2(xE) = −2λ

(
d

dλ
+ 1

λ−b

)
j1(xE)

λ
−
√

2
Db3

λπ

λ−b
ex2+

×

 ∞∫

x+

dx ex2
erfc2(x)− eδρ0(λ)

∞∫
x−

dx ex2
erfc2(x)

+ erfc(x+)

x+∫
x−

dx ex2
erfc(x)


 . (79)

The resulting formulas for the FPT’s mean and variance are given by

〈T 〉 = 〈T 〉0 + ελ

λ−b

√
π

2bD
ex2+

[
eδρ0(λ)erfc(x−)− erfc(x+)

]
, (80)

〈∆T 2〉 = 〈∆T 2〉0 − ελ

λ−b

√
2π

Db
ex2+

[
eδerfc(x−)

[
ρ′

0(λ)+〈T 〉0ρ0(λ)
]

+
√

π

b

∞∫
x−

dx ex2
erfc2(x)

[
	(x −x+)− eδρ0(λ)

]]
, (81)

where ρ′
0(λ) denotes the derivative2 of ρ0(λ) with respect to λ.

Again, the limits of small and large-λ may be considered. For λ →
0, it is easily seen from Eq. (8) that ρ0 → 1 and ρ′

0 →−〈T 〉0. With this I
obtain

〈T 〉 ≈ 〈T 〉0 − ελ

b

√
π

2bD

[
ex2−erfc(x−)− ex2+erfc(x+)

]
, λ
1/〈T 〉0, (82)

〈∆T 2〉 ≈ 〈∆T 2〉0 − ελπ

b2

√
2

Db

×
( ∞∫

x−

dx ex2+x2−erfc2(x)−
∞∫

x+

dx ex2+x2+erfc2(x)

)
, λ
1/〈T 〉0.

(83)

2Since there is no simple analytical expression for this derivative, I perform it numerically:
ρ′

0(λ)= [ρ0(λ+ ελ)−ρ0(λ)]/ελ with ελ =10−5.
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The terms proportional to ελ are also obtained by taking the derivative of
mean or variance of the unperturbed system given in Eqs. (73) and (74)
with respect to parameter a. For very slow driving, the perturbation acts
as a static change in the bias parameter. Consequently, the perturbation
calculation leads to the same result like a linearization of mean and vari-
ance with respect to a small change in the bias parameter.

In the case of infinite λ, the characteristic function ρ0 and its deriva-
tive ρ′

0 approach zero yielding the following simplified expressions for the
mean and variance

〈T 〉→〈T 〉0 − ε

√
π

2bD
ex2+erfc(x+) , λ→∞, (84)

〈∆T 2〉→〈∆T 2〉0 − ε

√
2

Db3
πex2+

∞∫
x+

dx ex2
erfc2(x), λ→∞. (85)

Again, what physically happens in this case is a shift of the initial point
from x(t = 0)= 0 to x(t = 0)= ε since the driving ελe−λt acts as a δ spike
at the initial time. Consequently, the above results are also obtained if
in eqs. (73) and (74) x+ (the only term where the initial point enters) is
replaced by (a − bε)/

√
2Db and the expressions are expanded to linear

order in ε. This in turn, is another check that the results achieved cannot
be completely wrong.

4. MEAN AND VARIANCE OF THE FPT: COMPARISON TO

SIMULATIONS

As a verification of the specific results derived in Section 3, I consider
the mean, the variance and the CV of the FPT in a linear and in a para-
bolic potential. It will become apparent that an exponential driving of these
systems can result in remarkable properties of the first two cumulants.

For all data shown, I use a weak positive driving amplitude of ε =
0.05, an intermediate noise intensity D =0.1, and the absorbing boundary
to be at xE =1. Furthermore, two different sets of potential parameters are
inspected: (i) a = 1, b = 0 for the linear potential and (ii) a = 0.8, b = 1 in
the case of a parabolic potential. The latter choice implies a significantly
different FPT statistics since here the escape from the potential minimum
at x =0.8 will dominate the passage time (for a large value of a, the poten-
tial minimum is beyond the absorbing boundary and the FPT statistics
will be akin to the linear-potential case). I compare the analytical results
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derived above to simulation results, that were obtained with a simple Eul-
er procedure in the case of a linear potential (time step was ∆t =10−4 and
106 passage times were simulated), and a modified Euler procedure(43) for
the parabolic potential (time step was ∆t = 10−3 and 106 passage times
were simulated). In all curves data for ε = 0 for which I know the exact
values of all quantities are shown for the sake of illustration and also to
demonstrate the validity and accuracy of the numerical simulation proce-
dure.

Since the agreement between theory and simulations is excellent, I do
not have to discuss it at length; I can regard it as a satisfying first con-
firmation of the presented analytical approach. Concerning the agreement
between theory and simulations at other parameter sets (e.g., larger driv-
ing amplitude and smaller or larger noise intensity), I restrict myself to
the following brief statement: the perturbation result for the correction to
a moment yields satisfying quantitative agreement with the simulations as
long as the correction is small compared to the respective unperturbed
moment. In general the theory will work best for intermediate up to large
noise intensities since with a nonweak noise the effect of an additional
weak driving will be only moderate and the first (linear) correction term
will suffice. Note, however, that for systems without a potential barrier
between initial point and absorbing boundary (like, for instance, the linear
potential), the theory works at weak noise, too.

In the remainder of this section I focus on the statistical features
of the exponentially driven first passage process as they are reflected by
mean, variance, and CV as functions of the decay rate λ.

4.1. Biased Random Walk with Exponential Forcing

It can be expected that a positive exponentially decaying forcing leads
to a decrease of the mean FPT. For the linear potential (i.e., a biased
random walk) this decrease is a monotonic function of λ as shown in
Fig. 1. At small λ the correction is proportional to λ according to the
static approximation Eq. (69) (shown by the dot-dashed line in Fig. 1). In
this range of λ the driving is effectively static with amplitude λε meaning
that its decay occurs on a time scale that is far beyond the mean FPT.
In other words, a part of the driving’s power is “wasted” because s(t)

still drives the system long after most realizations have been absorbed at
x = xE . For intermediate values of λ, the decay of the driving force takes
place much earlier and thus, its effect on the mean is less than that of
a static driving. Finally, in the large-λ limit the mean saturates according
to Eq. (71) at the value corresponding to a change of the initial point in
the unperturbed system. I note that the monotonic behavior of 〈T 〉 as a
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 λ

0.95

1

<T>

Theory ε=0
Theory ε=0.05
Sims ε=0
Sims ε=0.05

Fig. 1. The mean of the first passage time vs. decay rate of the exponential driving in the
case of a linear potential. Simulations (symbols) and theory (lines) Eq. (67) with the indi-
cated values of the driving amplitude. The dot-dashed line illustrates the slow-driving approx-
imation Eq. (69).

function of λ differs from what was found for periodically driven linear
systems in refs. 8,9. In the latter case, minima(8) or maxima(9) of the mean
FPT vs. the driving frequency were observed for different boundary and
initial conditions.

The variance of the FPT (Fig. 2) is always below that of the unper-
turbed case. It shows, remarkably, a nonmonotonic behavior as a function
of the decay rate. For the parameter set used in Fig. 2, the variance attains
a minimum at λ≈1.6. It is possible to calculate the exact location of this
minimum from Eq. (68) and express it solely by means of the mean 〈T 〉0
and the squared coefficient of variation (denoted for brevity by R =CV 2

0 )
of the unperturbed system

λmin =
√

1+4R −2R2 −3R2/2+4R −1
〈T 〉0R(2−R)2

. (86)

A minimum in the variance does not occur for an arbitrary parameter
set but if and only if

R <2 ⇒ CV0 =
√

2D/(axE)<
√

2, (87)

i.e., for sufficiently weak noise intensity or large bias a. If the condi-
tion Eq. (87) is met, the value at which the minimum is attained is an
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Fig. 2. The variance of the first passage time vs decay rate of the exponential driving in
the case of a linear potential. Simulations (symbols) and theory Eq. (68) (lines) with the
indicated values of the driving amplitude. The dot-dashed line illustrates the slow-driving
approximation Eq. (70).

increasing function of R diverging at R = 2 and saturating for small val-
ues of the CV (i.e. D →0 or a →∞) at

λmin → 3
2

1
〈T 〉0

as CV0 →0. (88)

The occurrence of the minimum seems to be related to the fact that a
time-dependent bias reduces the variability more strongly than a shift in
the initial point (corresponding to the limit λ → ∞) does. This gives rise
to the drop of the variance as λ is decreased starting in the large-λ limit.
The amplitude of the time-dependent driving, however, depends on λ,
too, so its effect on the dynamics gets weaker by further decreasing λ

and hence the variance starts to increase again. Accordingly, using the
exponential driving without the prefactor λ (i.e., without normalizing the
driving’s intensity) yields a variance that grows monotonicly with λ (not
shown). Therefore, the minimum of the variance is merely based on two
competing effects, namely, the greater impact of a slow driving (compared
to a fast one) on the reduction of the variance and the dependence of the
variance on the driving’s amplitude (i.e. ελ).

The minimum in the variance vs λ could be interpreted as an “opti-
mal” decrease in variability due to an exponential driving. Things look
different, though, from the view point of relative variability as it is quan-
tified by the CV (cf. Fig. 3). First of all, depending on the value of λ, the



First Passage Time under External Driving 725
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Fig. 3. The coefficient of variation of the first passage time vs decay rate of the exponential
driving in the case of a linear potential. Simulations (symbols) and theory using Eqs. (13),
(67) and (68) (lines) with the indicated values of the driving amplitude. The dot-dashed line
illustrates the slow-driving approximation using Eqs. (13), (69) and (70).

CV can be both larger or smaller than in the unperturbed case. For the
value of λ at which the variance attains a minimum the CV is larger than
in the unperturbed case and is thus far from being “optimal”. The fact
that the effect of the exponential driving on the CV can be both positive
or negative can be understood by looking at the CV in the limiting cases
of small and large decay rate where it corresponds to the CV of the unper-
turbed system with rescaled parameters. The latter depends on the inverse
of the product axE . A static increase of the bias (replacing a by a + ελ

which is the effect of a slow driving) will thus lead to a decrease in CV
compared to the unperturbed case (cf. the static approximation in Fig. 3).
In contrast, diminishing the difference between initial point and absorb-
ing boundary (replacing xE by xE −ε which is the effect of the forcing for
λ→∞) leads to a higher CV than in the unperturbed case. Interpolating
between the two limit cases will inevitably lead to at least one minimum
of the CV vs λ. For the parameter set used in Fig. 3, this minimum is
attained at a decay rate that is smaller than the inverse mean FPT of the
unperturbed system.

In conclusion, already in the simple linear potential case, the effect
of an exponential driving can be fairly involved. For the behavior of the
mean, variance, and CV as functions of the decay rate, it was essential that
I have used a constant-intensity scaling of the driving function.
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4.2. Escape Out of a Parabolic Potential with Exponential Forcing

With b>0 there is a true state dependence on the r.h.s. of the dynam-
ics Eq. (1). The state variable is attracted toward the potential minimum
at x =a/b. If this rest state is far beyond the absorbing boundary xE (i.e.,
xE 
a/b), the FPT statistics will be similar to that of the biased random
walk. In the following I choose, however, b = 1, a = 0.8, and xE = 1 such
that a/b <xE . With this choice the FPT problem is significantly different
from the linear potential previously discussed, since in order to reach the
absorbing boundary at xE = 1 the state variable x(t) has to be driven by
a sufficient noise to accomplish the escape out of the potential minimum.

In the case of a parabolic potential, already the mean FPT depends
nonmonotonicly on the driving’s decay rate λ (Fig. 4); it attains a mini-
mum for λ≈ 1.5 which stands in marked contrast to the linear case. The
reason for the occurrence of this minimum is the state dependence of
the dynamics Eq. (1) as I will show now. First of all, starting at λ = 0,
the mean FPT decreases linearly with λ in accord with the static approx-
imation shown by the dot-dashed line in Fig. 4. This is completely equiv-
alent to the linear potential case. Secondly, the mean FPT also drops if
the decay rate is decreased starting from the large-λ limit. In other words,
the limiting value is approached from below. The behavior of the mean in
these two limits implies the occurrence of at least one minimum.

0.01 0.1 1 10

 λ

2.62

2.64

2.66

2.68

2.7

<T>

Theory ε=0
Theory ε=0.05
Sims, ε=0
Sims, ε=0.05 

Fig. 4. The mean of the first passage time vs decay rate of the exponential driving in the
case of a parabolic potential. Simulations (symbols) and theory Eq. (80) (lines) with the
indicated values of the driving amplitude. The dot-dashed line illustrates the slow-driving
approximation Eq. (82); the dotted line is the extended large-λ approximation Eq. (92).
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In order to understand why the large-λ limit is approached from
below, I consider a large but finite value of λ and a time t for which

1
λ


 t 
〈T 〉0. (89)

For such times it can be taken for granted that the driving has practically
decayed to zero but on the other hand it is highly unlikely that a realiza-
tion has already reached xE . In this case the effect of the driving can be
inferred from the free solution of Eq. (1) for a parabolic potential with
initial value x(t =0)=0 which can be written as follows:

x(t)= ε

(
1+ b

λ−b

)
e−bt − ε

λ

λ−b
e−λt +

t∫
0

dt̃ eb(t̃−t)[a +
√

2Dξ(t̃)]. (90)

If the condition Eq. (89) is met, the second term can be neglected and the
solution reads

x(t)= ε

(
1+ b

λ−b

)
e−bt +

t∫
0

dt̃eb(t̃−t)[a +
√

2Dξ(t)]. (91)

This approximate solution is, however, equivalent to the unperturbed
dynamics with an initial point at x(t = 0) = ε[1 + b/(λ − b)]. The equiva-
lence holds true for a time t obeying Eq. (89) and any time larger than this
time. In other words, for t �1/λ the realization of the original process and
that of the unperturbed process with the modified initial condition differ
only by a small exponential contribution. Consequently, also the FPT sta-
tistics of both processes will be the same provided that a successful escape
toward xE is highly unlikely for short times at which Eq. (91) does not
hold true.

For λ → ∞, the initial condition approaches the value x(t = 0) → ε

(see the discussion around Eq. (84)). For a large but finite value of λ, the
shift in the initial point will be larger than in the latter limit and thus the
mean will be more strongly decreased than in the strict limit λ → ∞. To
obtain an explicit formula showing this drop, the mean of the unperturbed
system with modified initial point is linearized with respect to ε (this is not
strictly necessary but consistent with the linear approach used throughout
this paper) yielding

〈T 〉≈〈T 〉0 − ε

(
1+ b

λ−b

)√
π

2bD
ex2+erfc(x+) , λ�1/〈T 〉0. (92)
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Of course, this is also obtained by replacing the amplitude ε in Eq. (84)
by the modified amplitude ε[1+b/(λ−b)]. The approximation is shown in
Fig. 4 by a dotted line; it displays the drop of the mean with decreasing
λ at large decay rate and agrees well with the full solution in this range.

I note that a nonmonotonic behavior of the mean was also found
for a system with parabolic potential and a periodic forcing in ref. 15. If
the system is driven by s(t)= ε cos(ωt) the mean passes through maxima
and less pronounced minima when plotted as a function of the driving
frequency (cf. in particular Figs. 11–13 in(15)). There are two important
differences between the exponential and periodic driving functions: (1) the
periodic driving attains both positive and negative values; (2) the ampli-
tude of the periodic forcing as considered in ref. 15 is fixed and does not
depend on the time scale of the driving. The maxima and minima found
for periodic driving are true resonance phenomena. In contrast, the min-
imum in the mean FPT for exponential driving appears as a compromise
between the dependence of the driving’s amplitude on the decay rate (drop
of the mean with increasing λ at small λ) and the stronger effect of a
truly time dependent driving on the state-dependent dynamics (drop of the
mean with decreasing λ for λ � 1/〈T 〉0). I would like to point out that
the latter argument does not apply in the case of a linear potential (i.e.,
a state-independent force) because for b=0 the λ dependent modification
of the initial point in Eq. (91) vanishes. Hence, in this case we cannot infer
the existence of a minimum of 〈T 〉 vs λ and, in fact, it also does not occur
as was seen in the previous subsection.

Turning to the variance depicted in Fig. 5, I note that this function
also passes through a minimum vs λ like in the linear case. This minimum
occurs at a smaller decay rate (λ≈ 0.38) than that of the mean FPT and
remarkably close to the inverse mean first passage time of the unperturbed
system (1/〈T 〉0 ≈0.37). Plotting the analytical solution Eq. (81) for differ-
ent parameters reveals that this time-scale matching condition holds true
as long as the system is in the “subthreshold” regime, i.e., for a/b < xE

and weak up to moderate noise intensity. For larger noise intensity and/or
“suprathreshold” system parameters (a/b>xE) the minimum is attained at
values larger than 1/〈T 〉0. For the specific limit of weak noise and a →∞,
one can expect the location at the value found for the linear potential,
namely λmin → 3/(2〈T 〉0) which is indeed larger than the inverse of the
mean FPT in the unperturbed case.

The minimum of the variance can be understood by the same line
of reasoning as in the case of the mean, i.e. by considering the behav-
ior at small and large-λ which are determined by the static approxima-
tion and by the effective solution Eq. (91), respectively. The latter leads,
in complete analogy to the derivation of Eq. (92), to the extended large-λ
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Fig. 5. The variance of the first passage time vs decay rate of the exponential driving in
the case of a parabolic potential. Simulations (symbols) and theory Eq. (81) (lines) with the
indicated values of the driving amplitude. The dot-dashed line illustrates the slow-driving
approximation Eq. (83); the dotted line is the extended large-λ approximation Eq. (93).

approximation of the variance

〈∆T 2〉≈〈∆T 2〉0 − ε

(
1+ b

λ−b

)√
2

Db3
πex2+

∞∫
x+

dx ex2
erfc2(x), λ� 1

〈T 〉0
.

(93)

This is shown in Eq. 81 by the dotted line. I note, however, that the actual
drop in variance at large λ extends over a much larger range where Eq. (93)
does not hold true anymore; the decrease of the variance in this range is
also much stronger than expected from Eq. (93). The effect of a temporally
extended driving is thus much stronger than a change of the initial point sim-
ilar to the case of a linear potential. Furthermore, because the amplitude of
the driving depends on λ, the variance will drop for λ → 0 to the value of
the unperturbed system. The occurrence of the minimum is therefore mainly
based on the different sensitivity of the FPT statistics with respect to changes
in the bias term a and the initial point of the passage and the λ dependence
of the driving amplitude due to the constant-intensity scaling of the forcing.

Since the minima in mean and variance vs λ are attained at distinct val-
ues of the decay rate, I can expect a complicated behavior for the relative
variability of the FPT. Indeed, the CV as a function of decay rate shown in
Fig. 6 first goes through a minimum (λmin ≈ 0.66), reaches a maximum at a
finite decay rate (λmax ≈ 2.8), and saturates at a CV that is higher than in
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Fig. 6. The coefficient of variation of the first passage time vs decay rate of the expo-
nential driving in the case of a parabolic potential. Simulations (symbols) and theory using
Eqs. (13), (80) and (81) (lines) with the indicated values of the driving amplitude. The
dot-dashed line illustrates the slow-driving approximation using Eqs. (13), (82) and (83).

the unperturbed case. Compared to the CV of the linear potential system (cf.
Fig. 3), the decrease at small λ is weaker; furthermore, there is no maximum
for the linear system but only a saturation at large decay rate.

For the chosen parameters the FPT from x =0 to x =xE can be split
into two independent FPTs as T =T1 +T2 with T1 being the FPT from x =
0 into the minimum x = a/b and T2 being the time for the passage from
the minimum to the absorbing boundary (see, for instance, ref. 44). It is
straightforward to show that

CV2 =CV2
1
〈T1〉2

〈T 〉2
+CV 2

2
〈T2〉2

〈T 〉2
(94)

where CV1 and CV2 are the CV of the respective passage processes. Now
the relaxation into the minimum is evidently more regular than the noise-
assisted escape out of the potential minimum, i.e., CV2 >CV1. The behav-
ior of the CV can be understood by considering how in the limits of
small and large decay rate the relative contributions of T1 and T2 are
changed.

At low decay rate, the driving is effectively static, hence the system
is equivalent to the unperturbed dynamics with enlarged bias a +ελ. This
system in turn is equivalent to the unperturbed dynamics with the orig-
inal bias a but initial point at x = −ελ and absorbing boundary at x =
xE −ελ. With these parameters, the FPT T1 from initial point to potential
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minimum increases and the FPT T2 from minimum to absorbing boundary
drops compared to the unperturbed case. It is reasonable that the CVs of
the single passage processes change only slightly; what mainly changes is
their relative contribution to the total CV by means of the squared ratios
T1/T and T2/T . Hence, according to Eq. (94) the CV will drop since the
lower CV of T1 makes a larger relative contribution. From this line of
argument, it is also reasonable that the CV drops with increasing λ as long
as the static approximation holds true.

In the limit of λ�1〈T 〉, one obtains also the unperturbed dynamics
(as explained above by means of Eq. (91)) but for a passage process from
x = ε[1+b/(λ−b)] to x =xE . Obviously, here the escape time T2 is the
same as in the unperturbed case; the first FPT T1, however, has been
shortened. According to Eq. (94), one can thus expect a higher CV than in
the unperturbed case since CV2 makes a larger relative contribution to the
CV of the total FPT. Moreover, the λ→∞ limit of the CV is approached
from above because the shift in initial point drops with increasing λ.
Interpolating in the simplest way between the behavior at small and large λ

predicts a minimum at moderately low decay rate and a maximum at larger
rate as has been found in Fig. 6. I note that for the decay rate at which the
variance attains a minimum, the CV is higher than in the unperturbed case,
similarly to the linear potential case (b=0) discussed in Section 4.1.

Like in the case of the biased random walk, the behavior of mean and
variance as functions of the decay rate depends crucially on the constant-
intensity scaling of the driving I have used. Additionally, the state-dependence
of the force leads to a nonmonotonic behavior of the mean as a function of
the decay rate. The minima in mean and variance are not true resonances as in
the case of a periodic driving but are mainly related to the distinct sensitivity
of the FPT statistics with respect to changes in the initial point or in the bias
parameter, respectively. Nevertheless, in physical situations where a constant-
intensity scaling of the driving is appropriate, the nonmonotonic behavior of
the first two cumulants and of the CV may be of some importance.

5. SUMMARY AND OUTLOOK

In this paper I have studied the moments of the first passage time in
presence of a weak time-dependent driving. A formula for the corrections
to the moments for arbitrary driving and potential shape were derived that
contains the time-dependent probability density of the unperturbed sys-
tem or its Laplace transform. The latter functions, however, are known
only in a few rare cases. Explicit correction formulas for the mean and
variance of the first passage time could be achieved for the case of an
exponentially decaying driving function and an either linear or parabolic
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potential. These analytical results were found to be in excellent agreement
with results from computer simulations of the passage processes. I dem-
onstrated furthermore, that for the chosen exponential driving, the vari-
ance of the passage time in the linear case as well as both the mean and
the passage time in the case of a parabolic potential pass through minima
as functions of the decay rate of the driving. The behavior of the relative
standard deviation (i.e. the CV) proved to be even more complicated. All
of these findings resemble the effects of coherent stochastic resonance and
resonant activation. However, they rely on a different mechanism involv-
ing the constant-intensity scaling of the driving.

The explicit results for the case of a linear or a parabolic potential
derived in this paper will be applied in the near future to the neurobiolog-
ical problems mentioned in the introduction. Furthermore, the results can
be useful for other problems, too. The application of the formulas to the
case of a periodic driving with a cosine function studied in refs. 9,15,16
is straightforward. Likewise, the case of an exponentially damped cosine
function involving two time scales (driving period and decay rate) can be
readily derived from my formulas and might be worth it to look at.

The general approach presented in this paper may be easily extended
to the cases of two absorbing boundaries or one absorbing and one reflect-
ing boundary. I am also convinced that the problem of a state-dependent
driving (i.e. dealing with a force s(x, t) instead of s(t)) can be successfully
treated with the approach. Finally, the case of a stochastic driving func-
tion might be tackled by a proper average of the correction formulas over
the driving process and its initial condition. This last problem, though,
seems to be much more challenging than the other extensions of the theory.

APPENDIX A. EQUIVALENCE OF THE DIFFERENT QUADRATURES

EXPRESSIONS

Here I show that Eq. (27) together with Eqs. (16) and (24) yields the
same FPT moments as the standard formula Eq. (9). The two differing
expressions for the n-th moment can be written as follows (indices “S” and
“A” stand for “standard” and “alternative”)

〈T n〉S = n

Dn

b∫
a

dy1e
U(y1)

D

y1∫
−∞

dx1e
− U(x1)

D

b∫
x1

dy2e
U(y2)

D

y2∫
−∞

dx2e
− U(x2)

D

· · ·
b∫

xn−1

dyne
U(yn)

D

yn∫
−∞

dxne
− U(xn)

D (A.1)



First Passage Time under External Driving 733

〈T n〉A = n

Dn

b∫
−∞

dy1e
− U(y1)

D

b∫
y1

dx1e
U(x1)

D

x1∫
−∞

dy2e
− U(y2)

D

b∫
y2

dx2e
U(x2)

D

· · ·
xn−1∫

−∞
dyne

− U(yn)
D

b∫
yn

dxne
U(xn)

D 	(xn −a). (A.2)

Note that for the second formula, I have used an arbitrary initial point
x(t =0)=a which only changes the argument of the Heaviside function in
Eq. (24).

Now I introduce the operators

K̂xj
(x) =

b∫
xj

dy eU(y)/D

y∫
−∞

dxe−U(x)/D, (A.3)

M̂xj
(x) =

xj∫
−∞

dy e−U(y)/D

b∫
y

dxeU(x)/D, (A.4)

where the argument indicates the variable with respect to which the respec-
tive function is integrated, while the index denotes as a parameter one
boundary of integration. It is not hard to show that for u,w <b

M̂u(v)	(v −w)= K̂w(v)	(u−v). (A.5)

and

M̂u(v)K̂w(x)= K̂w(x)M̂u(v), (A.6)

i.e., the operators commute if their arguments and indices differ.
By means of the operators, the two expressions for the n-th moment

can be written as follows:

〈T n〉S = n

Dn
K̂a(x1)K̂x1(x2) · · · K̂xn−1(xn)	(b−xn), (A.7)

〈T n〉A = n

Dn
M̂b(x1)M̂x1(x2) · · ·M̂xn−1(xn)	(xn −a). (A.8)
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Note that the function 	(b − xn) in Eq. (A.7) is always one since xj < b

for all j =1, . . . n. Using the relations Eqs. (A.5) and (A.6) it follows from
Eq. (A.8) that:

〈T n〉A = n

Dn
M̂b(x1) · · ·M̂xn−2(xn−1)K̂a(xn)	(xn−1 −xn)

= n

Dn
M̂b(x1) · · ·M̂xn−3(xn−2)K̂a(xn)K̂xn(xn−1)	(xn−2 −xn−1)

...,

= n

Dn
K̂a(xn) · · · K̂x2(x1)	(b−x1)

= 〈T n〉S (A.9)

as it should be.

APPENDIX B. SIMPLIFICATION OF THE CORRECTION FORMULAS

FOR A PARABOLIC POTENTIAL

Using Eq. (55) with n = 0 the correction to the mean FPT Eq. (52)
reads

j1(xE)=− λ

D

xE∫
−∞

dxe−U(x)/D

∫ xE

x

dy eU(y)/Dp̃0(y, λ). (B.1)

By multiplying the FPE Eq. (2) with e−λt and integrating over time, it is
readily verified that p̃0(x, λ) appearing in Eq. (B.1) obeys the following
ordinary differential equation

−δ(x)+λp̃0 = d

dx
(U ′ +D

d

dx
)p̃0. (B.2)

Using this equation in the form

p̃0 = 1
λ

(
δ(x)+ d

dx
(U ′ +D

d

dx
)p̃0

)
(B.3)
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in Eq. (B.1) and integrating a few times by part, the following expression
for the first integral in Eq. (B.1) is obtained

∫ xE

x

dyeU(y)/Dp̃0(y, λ) = 1
λ

(
	(−x)+D

[
eUE/Dp̃′

0,E − eU(x)/Dp̃′
0(x)

]

+
∫ xE

x

dy U ′′(y)eU(y)/Dp̃0(y)

)
, (B.4)

where an index “E” means that the respective function is taken at x =xE .
For the specific potential Eq. (56), this yields (using Eq. (7))

∫ xE

x

dyeU(y)/Dp̃0(y, λ)= 1
λ−b

(
	(−x)− eUE/Dρ0(λ)−DeU(x)/Dp̃′

0(x)

)
.

(B.5)

Here, ρ0(λ) denotes the Laplace transform of the FPT density for the
unperturbed system. Inserting this formula into Eq. (52) the quadrature
formula Eq. (57) is obtained. One may repeat the whole derivation for
arbitrary x (this is needed in the calculation of j2(xE)), yielding

j1(x) =
(

1
λ−b

T̂0 − T̂1

)
P0(x, t)+ λ/D

λ−b

×
(

eUE/Dρ0(λ)

∫ x

−∞
dye−U(y)/D −

∫ x

−∞
dye−U(y)/D	(−y)

)
. (B.6)

Insertion into Eq. (53) and a few manipulations of the occurring multiple
integrals leads to the correction of the second moment given in Eq. (58).
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I am indebted to André Longtin for inspiring discussions that brought
the subject of this paper to my attention; I furthermore wish him to thank
for his generous support during the last few years. I would like to thank
Jason Middleton for a careful reading of the manuscript. This work has
been supported by NSERC Canada.

REFERENCES

1. L. Pontryagin, A. Andronov, and A. Witt, Zh. Eksp. Teor. Fiz., 3:172 (1933): Reprinted
in Noise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock (eds) Vol. 1,
(Cambridge University Press, Cambridge, 1989), p. 329.



736 Lindner

2. A. J. F. Siegert, On the first passage time problem, Phys. Rev. 81:617 (1951).
3. M. Bier and R. D. Astumian, Matching a diffusive and a kinetic approach for escape

over an fluctuating barrier, Phys. Rev. Lett. 71:1649 (1993).
4. C. R. Doering and J. C. Gadoua, Resonant activation over a fluctuating barrier, Phys.

Rev. Lett. 16:2318 (1992).
5. P. Pechukas and P. Hänggi, Rates of activated processes with fluctuating barriers, Phys.

Rev. Lett. 73:2772 (1994).
6. P. Reimann, Thermally driven escape with fluctuating potentials: A new type of resonant

activation, Phys. Rev. Lett. 74:4576 (1995).
7. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod.

Phys. 70:223 (1998).
8. J. E. Fletcher, S. Havlin, and G. H. Weiss, First passage time problems in time-dependent

fields, J. Stat. Phys. 51:215 (1988).
9. M. Gitterman and G. H. Weiss, Coherent stochastic resonance in the presence of a field,

Phys. Rev. E 52:5708 (1995).
10. J. Masoliver, A. Robinson, and G. H. Weiss, Coherent stochastic resonance, Phys. Rev. E

51:4021 (1995).
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31. R. Gutiérrez Jáimez, P. Román Román, and F. Torres Ruiz, A note on the Volterra inte-
gral equation for the first-passage-time probability density, J. Appl. Prob. 32:635 (1995).

32. J. Lehmann, P. Reimann, and P. Hänggi, Surmounting oscillating barriers, Phys. Rev.
Lett. 84:1639 (2000).

33. V. N. Smelyanski, M. I. Dykman, and B. Golding, Time oscillations of escape rates in
periodically driven systems, Phys. Rev. Lett. 82:3193 (1999).

34. P. Talkner and J. Łuczka, Rate description of Fokker-Planck processes with time depen-
dent parameters, cond-mat/0307498, (2003).

35. A. I. Shushin, Effect of external force on the kinetics of diffusion-controlled escaping
from a one-dimensional potential well, Phys. Rev. E 62:4688 (2000).

36. P. Hänggi, P. Talkner, and M. Borkovec, Reaction rate theory: Fifty years after kramers,
Rev. Mod. Phys. 62:251 (1990).

37. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical
reactions, Physica 7:284 (1940).

38. C. W. Gardiner, Handbook of Stochastic Methods, (Springer-Verlag, Berlin, 1985).
39. A. V. Holden, Models of the Stochastic Activity of Neurones, (Springer-Verlag, Berlin,

1976).
40. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, (Dover,

New York, 1970).
41. N. G. Van Kampen, Short first-passage times, J. Stat. Phys. 70:15 (1993).
42. B. Lindner, L. Schimansky-Geier, and A. Longtin, Maximizing spike train coherence or

incoherence in the leaky integrate-and-fire model, Phys. Rev. E 66:031916 (2002).
43. J. Honerkamp, Stochastic Dynamical Systems. Concepts, Numerical Methods, Data Anal-

ysis, (Wiley/VCH, Weinheim, 1993).
44. K. Pakdaman, S. Tanabe, and T. Shimokawa, Coherence resonance and discharge

reliability in neurons and neuronal models, Neural Networks 14:895 (2001).


